Standardized Test Prep

Exploring Periodic Data

Multiple Choice

For Exercises 1-3, choose the correct letter.

1. Which pair of coordinates names one complete cycle of the periodic function? D

 \triangle (-5, -3) to (-2, 2)

(-5, -3) to (5, 0)

2. Which graph is NOT the graph of a periodic function? G

3. A periodic function has a period of 12 s. How many cycles does it go through in 40 s? A

28 cycles

(D) 480 cycles

Short Response

- 4. The graph at the right represents a periodic function.
 - a. What is the period of the function?
 - b. What is the amplitude of the function?

[2] a. 2.5 b. 1.75

[1] incorrect period OR incorrect amplitude

[0] no answers given

Multiple Choice

For Exercises 1-4, choose the correct letter.

1. Which angle, in standard position, is coterminal with an angle in standard position measuring 152°? D

(A) 28°

(B) 62°

→ 208°

2. Which could be the measure of an angle θ where $\sin \theta$ is $-\frac{\sqrt{3}}{2}$? G

→ -330°

240°

⊕ 60°

→ 150°

3. An angle in standard position intersects the unit circle at (0, -1). Which could be the measure of the angle? C

90°

−450°

540°

4. What are the coordinates of the point where the terminal side of a 135° angle intersects the unit circle? F

Short Response

5. What is the exact value of sin (300°)? Show your work.

[2] $\sin (300^\circ) = -\frac{\sqrt{3}}{2}$

- [1] incorrect answer OR incorrect work OR work not shown
- [0] incorrect answers and no work shown OR answers not given

Standardized Test Prep

Multiple Choice

For Exercises 1-4, choose the correct letter.

- 1. Which angle measure is equivalent to $\frac{4\pi}{3}$ radians?
 - A 60°
- 135°
- 240°

- **2.** If $\sin \theta = \frac{\sqrt{3}}{2}$, which could be the value of θ ?
 - $\frac{2\pi}{2}$ radians
- $\bigcirc \frac{3\pi}{4}$ radians $\bigcirc \frac{4\pi}{3}$ radians
- $\frac{3\pi}{2}$ radians
- 3. In a circle with a 12 mm radius, a central angle measuring $\frac{7\pi}{6}$ radians intercepts an arc. What is the length of the arc? D
 - $\frac{2\pi}{7}$ mm
- $\frac{72\pi}{7}$ mm
- \bigcirc 12 π mm
- 14π mm
- 4. Circle X has a central angle of $\frac{3\pi}{8}$ radians intercepting an arc 3π ft long. Circle Y has a central angle of $\frac{3\pi}{4}$ radians intercepting an arc 3π ft long. Which best describes the radii of circle X and circle Y? G
 - The radius of circle X is half as long as the radius of circle Y.
 - The radius of circle X is twice as long as the radius of circle Y.
 - The radius of circle X is the same length as the radius of circle Y.
 - The radius of circle X is more than twice as long as the radius of circle Y.

Short Response

- 5. Describe the relationship between the total number of radians in a circle and the circumference of the circle.
 - [2] A central angle measuring 1 radian intercepts an arc the same length as the radius of the circle. Because the circumference of a circle is $2\pi r_r$ there are 2π radians in a circle.
 - [1] incomplete explanation
 - [0] no answer given

Standardized Test Prep

Multiple Choice

For Exercises 1-5, choose the correct letter.

- 1. Which expressions have the same value? C
- I. $\sin(-30^{\circ})$ (A) I and II
- II. sin 390° (B) I and III
- III. sin 30°
- II and III
- I, II, and III
- **2.** What is the period of the function $y = -\frac{2}{5}\sin 6\pi\theta$? **F**(a) $\frac{1}{3}$ (b) $\frac{1}{3}\pi$

- \bigcirc 6π
- 3. Which function has an amplitude of 3 and a period of 3π ? D

$$\triangle$$
 $y = \frac{2}{3} \sin 3\theta$

$$\bigcirc$$
 $y = 3s$

- $\nabla y = 3 \sin \frac{2}{3}\theta$
- 4. What is the amplitude and period of the sine curve shown at the right? |
- ⊕ amplitude −2.5, period 4π
- ⊕ amplitude −2.5 period π
- @ amplitude 2.5, period $\frac{3}{2}\pi$

amplitude 2.5, period π

- 5. Which function represents the sine curve shown at the right?
- \triangle $y = -4 \sin 2\theta$

 $\nabla y = -4 \sin \theta$

(B) $y = 4 \sin \pi \theta$

 $\nabla v = 4 \sin 2\pi \theta$

Extended Response

- **6.** The function $y=\frac{2}{3}\sin\frac{7\pi}{9}\theta$ represents a sine curve. Find the amplitude of the sine curve and its period in radians. Show your work.
 - [4] amplitude: $\frac{2}{3}$; period: $\frac{2\pi}{b} = \frac{2\pi}{7\pi} = 2\pi \cdot \frac{9}{7\pi} = 2\frac{4}{7}$
 - [3] appropriate methods, but with one computational error
 - [2] incorrect amplitude with correct period OR correct amplitude with period calculated incorrectly
 - [1] correct amplitude and period, without work shown
 - [0] incorrect answers and no work shown OR no answers given